Конвертер величин
Содержание:
- 2.6. Защита от радиационного излучения
- Основные единицы измерения ионизирующих излучений
- Измерение радиационного излучения
- Обзор
- Ионизирующее излучение
- Мощность дозы излучения
- Алкоголизм на Руси: как все начиналось…
- Способы лечения от похмелья в домашних условия
- Лучевая терапия [ править ]
- Величины, связанные с радиацией [ править ]
2.6. Защита от радиационного излучения
При проведении контроля степени облучения сельскохозяйственных животных необходимо определять дозы внешнего облучения. Это можно делать с помощью дозиметрических приборов, но дозу можно определять и путем вычисления. В основе расчетных методов определения доз облучения лежат закономерности взаимодействия ионизирующих излучений с веществом. Вычисление доз облучения при внешнем гамма-облучении
Доза облучения прямо пропорциональна мощности дозы облучения и времени его воздействия:
D = P ´ t,
где D – доза облучения;
P – мощность дозы облучения;
t – время облучения.
Доза облучения от внешних точечных источников прямо пропорциональна мощности дозы облучения и обратно пропорциональна квадрату расстояния до него:
D= P ´ t / R2,
где R – расстояние до источника излучения, см;
D – доза облучения, Р;
P – мощность дозы излучения, Р/ч;
T – время облучения, часы.
Существует взаимосвязь между активностью (А) радиоактивных веществ и мощностью дозы излучения, создаваемой их гамма-излучением. Поэтому в формуле мощность дозы излучения (Р) можно заменить выражением (P = Kγ ´ A) и формула примет вид:
D = (Kγ ´ A´ t) / R2,
где D – доза облучения, Р;
Kγ – гамма-постоянная данного радиоизотопа (P´см2 / ч´мКи);
A – активность данного радиоизотопа, мКи;
t – время облучения, часы;
R – расстояние до источника излучения, см.
Доза облучения может быть уменьшена с помощью поглощения излучения материалами защитных экранов. Значение этого коэффициента зависит от вида излучения, его энергии, материала экрана и толщины. Для гамма-излучения его можно рассчитать по следующей формуле:
Kосл. = 2 ´ h / dпол.,
где Косл. – коэффициент ослабления излучения, (см. таблицу 28);
h – толщина защитного слоя материала, см;
dпол. – слой половинного ослабления материала, см, т.е. такая толщина слоя материала, которая ослабляет интенсивность излучения в 2 раза.
Таблица 28 – Средние значения коэффициента ослабления дозы радиации (Косл.) укрытиями и транспортом
Наименование укрытий и транспортных средств |
Косл. |
Открытое расположение на местности |
1 |
Открытые щели |
3 |
Производственные одноэтажные здания (цех) (коровник, свинарник, кирпичный без перекрытия) |
7 |
Коровник, свинарник кирпичный с ж/б перекрытием |
12,5 |
Жилые каменные дома |
|
Одноэтажные |
10 |
Подвал одноэтажного каменного дома |
40 |
Двухэтажные |
15 |
Подвал двухэтажного каменного дома |
100 |
Жилые деревянные дома |
|
Одноэтажные |
2 |
Подвал одноэтажного деревянного дома |
7 |
Погреб |
20 |
Защиту от облучения можно проводить следующими методами:
1.Защита временем. Следует находиться в зоне облучения минимальное время.
2.Защита расстоянием. Следует находиться от источника излучения на максимальном расстоянии.
3.Защита экранами. Следует использовать защитные средства из различных материалов (орг. стекло, дерево, кирпич, бетон, свинец, резина).
2.6.1. Принципы нормирования в области радиационной безопасности 2.6.2. Принципы радиозащитного питания
Предыдущая |
Основные единицы измерения ионизирующих излучений
Рентген (Р, R) – внесистемная единица экспозиционной дозы фотонного (гамма- и рентгеновского) излучений. Микрорентген – миллионная часть рентгена, мкР
Поглощённая доза (сокращённое обозначение – д о з а) – определяется двумя основными способами.
Для малых и средних уровней облучения – применяют единицы Зиверт. Дальше – считают в единицах Грэй. По цифрам, эти ед-цы примерно равны.
Зиверт (Зв, Sv) – в системе единиц СИ, поглощенная доза с учётом, в виде коэффициентов,
энергии и типов излучения (эквивалентная) и радиочувствительности живых органов и тканей в теле человека (эффективная). Данная ед-ца используется до величин дозы – порядка 1.5 зиверта, для более высоких значений облучения – используют Грэи.
1 миллизиверт (мЗв. mSv) = 0.001 зиверт
1 микрозиверт (мкЗв. µSv) = 0.001 милизиверт
Для оценки влияния ионизирующего облучения на человека – служит величина индивидуальной эффективной дозы (ИЭД, мЗв/чел.) Медицинская компонента, обусловленная использованием ИИИ (источников ион. излучения) в медицинских целях – составляет от 20 до 30%.
бэр – биологический эквивалент рентгена; это старая, внесистемная единица поглощённой дозы; современная – Зиверт.
1 бэр ~ 1 сЗв (сантизиверт).
1 Зв ~ 100 бэр
Мощность дозы – д о з а излучения за единицу времени:
0.10 мкЗв/час == 10 мкР/час
(двойной знак равенства означает здесь «примерно»)
1 зиверт == 100 рентген
Коэффициент качества излучения для гамма-квантов и бета-частиц равен единице (Q=1), для быстрых нейтронов Q=10, для альфа-частиц Q=20 и т.д.
Активность (А) радиоактивного вещества – число спонтанных ядерных превращений в этом вещ-ве на определённой площади, в единичном кубическом объёме («объёмная активность») или в единице веса («удельная активность») за малый промежуток времени. Единицей измерения активности, в системе СИ, является:
1 беккерель (Бк, Bq) = 1 ядерное превращение в секунду
109 Бк = 1 гигабеккерель (ГБк, GBq)
До сих пор ещё используется (особенно часто – на экологических картах радиоактивного заражения, в расчёте на квадратный километр) старая внесистемная единица измерения активности рад.вещ. в сист. СГС – К ю р и:
1 кюри (Ки, Ci) = 3,7 х 1010 беккерель = 37 гигабеккерель (ГБк, GBq)
1 мкКи (микрокюри) = 3,7 х 104 распадов в секунду = 2,22 х 106 расп. в минуту.
Человеческий организм содержит примерно 0,1 мкКи калия-40 натурального происхождения.
Верхнее значение безопасной (то есть, на уровне естественной) «минимально значимой активности» (МЗА) – находится в пределах от 3.7 кБк (килобеккерель) до 37 МБк (мегабеккерель), в зависимости от вида излучения (до удельных 74 кБк/кг – для твёрдых бета-активных,
менее 3.7 кБк/кг – для гаммаактивных, меньше 7.4 кБк/кг – для альфаактивных веществ, до 0.37 кБк/кг – для трансурановых).
Грэй (Гр, Gy) – в системе СИ, величина энергии ионизирующего излучения, переданная веществу.
1 Гр (ед. СИ) = 100 рад (внесистемная единица) == 100 рентген (с точностью 15-20%, для энергий 0.1-5 МэВ)
5 мГр == 500 мР = 0.5 Р (безопасная доза общего кратковременного облучения – исключаются клинически выраженные соматические эффекты; при медицинском обследовании или лечении – это как снимок флюорографии, сделанный на старом аппарате, раз в год).
При экспозиционной дозе в 1 рентген, поглощённая доза в воздухе будет 0,85 рад
Измерение радиационного излучения
При слове «радиация» у многих людей в мозге возникает картины страшной аварии на Чернобыльской АЭС. Однако люди каждый день подвергаются воздействию тех или иных ионизирующих факторов. Для измерения этого ионизирующего излучения существует ряд приборов. Соответственно, существуют и единицы измерения, и допустимые нормы радиационного фона.
К основным источникам радиации относятся:
- природные радиоактивные вещества, окружающие человека (70%);
- медицинские аппараты: рентген, томограф и прочие (10%);
- космическая солнечная радиация (именно от неё человечество защищает озоновый слой) (15%);
- бытовые электроприборы (5%).
Проверку на величину радиационного фона и силу излучения проводят с помощью специальных приборов, которые позволят с точностью определить, насколько интенсивно излучение в исследуемом участке. Чаще всего замеры проводят в следующих местах и случаях:
- при наличии рядом явного источника радиационного заражения (вблизи атомных электростанций);
- во время путешествий и походов по неизвестной территории, где рядом может находиться радиоактивный источник;
- перед строительством жилого дома или при приобретении квартиры.
Обзор
Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.
Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.
Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:
- костный мозг, где происходит образование клеток иммунитета и крови,
- кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
- ткани плода у беременной женщины.
Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.
Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине
Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач
Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?
Ионизирующее излучение
Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко — радиация.
Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.
Альфа-лучи
В магнитном поле они отклоняются так же, как и и положительно заряженные частицы. В дальнейшем было выяснено что это тяжёлые, положительно заряженные ядра атомов гелия. Возникают при распаде более сложных атомных ядер, например, урана, радия или тория. Обладают большой массой и относительно низкой скоростью излучения. Это обуславливает их невысокую проникающую способность. Они не могут проникнуть даже сквозь лист бумаги.
Но при этом альфа-частицы обладают очень большой ионизирующей энергией, что является причиной их способности наносить очень серьёзные повреждения на клеточном уровне. Из всех видов лучей именно альфа характеризуются самыми тяжёлыми последствиями в случае их воздействия на организм.
Это разрушающее влияние случается только в случае непосредственного контакта с предметами, излучающими альфа-лучи. На практике это происходит в результате попадания радиоактивных элементов внутрь организма через желудочно-кишечный тракт при приёме пищи или воды, а также при вдыхании воздуха, насыщенного радиоактивной пылью. Кроме того альфа-частицы могут легко проникнуть в организм через повреждения кожных покровов. Разносясь с током крови по всему организму, они обладают способностью накапливаться, оказывая сильнейшее разрушающее воздействие в течение многих лет.
Необходимо иметь в виду, что попадающие в организм радиоактивные вещества, не выводятся из него самостоятельно. Человеческий организм практически никак не защищён от подобного рода проникновений. Он не может нейтрализовать, переработать, усвоить или вывести самостоятельно радиоактивный изотоп, попавший внутрь.
Бета-лучи
Отклоняются в ту же сторону что и отрицательно заряженные частицы. Источником бета-излучения являются внутриядерные процессы, связанные с превращением протона в нейтрон и наоборот- нейтрона в протон. При этом происходит излучение электрона или позитрона. Скорость распространения довольно высокая и приближается к скорости света. Бета-излучение обладает гораздо большей проникающей способностью, чем альфа-излучение, но ионизирующее воздействие выражено гораздо слабее.
Бета-излучение легко проникает сквозь одежду, но тонкий лист металла или средней толщины деревянный брусок полностью останавливают его. В отличие от альфа-излучения, бета-лучи способны наносить дистанционное поражение на расстоянии нескольких десятков метров от источника радиации.
Гамма- лучи
Эти лучи оказались нейтрально заряженными и никак не отклонялись в магнитном поле. Гамма-излучение представляет собою электромагнитную энергию, излучаемую в виде фотонов. Эта энергия освобождается в момент изменения энергетического состояния ядра атома.
Данный вид излучения характеризуется высокой скоростью, равной скорости света и крайне высокой проникающей способностью. Чтобы остановить гамма-излучение необходимы толстые бетонные стены. Парадокс состоит в том, что данный вид лучей менее всего способен оказывать разрушающее действие на организм. Их ионизирующее воздействие в сотни раз слабее бета-излучения и в десятки тысяч раз слабее альфа-излучения. Но способность преодолевать значительные расстояния и высокие проникающие свойства делают эти лучи потенциально наиболее опасными для человека. Поэтому остановимся на этом виде излучения более подробно.
Мощность дозы излучения
Многие ученые считают, что общее количество радиации, которому подвергся организм — не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения — также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте — при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.
В правилах безопасности для тех, кто работает с радиоактивными веществами, ограничения по облучению указаны, в единицах суммарной мощности дозы ионизирующего излучения, и в единицах мощности поглощенной дозы
Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.
В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации.
Опасность для здоровья, вызванная радиацией
Мощность дозы излучения, мкЗв/ч | Опасно для здоровья |
---|---|
>10 000 000 | Смертельно опасно: недостаточность органов и смерть в течение нескольких часов |
1 000 000 | Очень опасно для здоровья: рвота |
100 000 | Очень опасно для здоровья: радиоактивное отравление |
1 000 | Очень опасно: немедленно покиньте зараженную зону! |
100 | Очень опасно: повышенный риск для здоровья! |
20 | Очень опасно: опасность лучевой болезни! |
10 | Опасно: немедленно покиньте эту зону! |
5 | Опасно: как можно быстрее покиньте эту зону! |
2 | Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах |
1 | Безопасно: только для кратковременного нахождения в зоне, например в самолете при посадке или на взлете |
0,5 | Безопасно: можно жить в этой зоне долго или не очень долго, например, в здании со стенами из гранита |
<0,2 | Безопасно: уровень радиации в норме |
Автор статьи: Kateryna Yuri
Алкоголизм на Руси: как все начиналось…
За начало отсчета эпохи алкоголизма на Руси принято брать XVI век, когда из-за границы хлынули караваны вина и… водки. Многие сейчас могут принять последнюю за опечатку и несостыковку во времени, приписывая заслуги по изобретению «сорокоградусной» Дмитрию Ивановичу Менделееву. Однако существует мнение, что на самом деле водка появилась значительно раньше. Точной даты никто назвать не может, да и разные источники называют разных авторов этого напитка. Один из них — арабский врач Парес, который придумал аналог водки еще в 860 году. Исключительно для благородных медицинских целей.
Менделеев действительно сделал некоторый вклад в 1865 году, защитив «Рассуждение о соединении спирта с водою». Но своей научной работой он попытался определить идеальное соотношение двух этих жидкостей для пищевых, если так можно выразиться, нужд. На лавры первооткрывателя он совершенно не претендовал. Однако это событие обросло множеством лирических отступлений, которые в конечном итоге сделали отцом водки именно этого выдающегося химика.
В начале ХХ века производство и распитие спиртных напитков в России было под запретом. Правительство желало промышленной революции, научных открытий и повышения уровня знаний населения. Сухой закон в полной мере был принят в 1914 году и просуществовал вплоть до 1925 года.
Именно в середине 20-ых годов Сталин и Политбюро приняли решение о прекращении действия данного закона на территории всего СССР. Официальной версией сам вождь называл необходимость восстановления после Первой мировой войны и временное введение монополии на водку с целью стимулирования экономики. Однако в народе поговаривали, что «добро» на спиртное было дано только из личных соображений и капризов Иосифа Виссарионовича: на его родине, в Грузии, употребление вина было древней почитаемой традицией. Отсюда несложно догадаться, каким было отношение Сталина к алкоголю. А культ личности надиктовывал обществу определенную моду на многие вещи.
Далее была затяжная и беспощадная Великая Отечественная война (ВОВ), которая сильно пошатнула физическое и психическое состояние всего русского народа. Ежедневно солдаты уходили на фронт, принимая в обязательном порядке «наркомовские 100 грамм» — для поднятия духа и притупления чувства страха перед запахом смерти.
После того, как Юрий Левитан на всю страну объявил о победе на фашистскими захватчиками, страну охватила эйфория. Наступило долгожданное время надежд и планов на будущее. Народ стал массово расслабляться, «зализывая раны» и потери не без помощи водки. Русский дух почувствовал свободу, однако для нервной системы резкие, пусть даже и столь благополучные перемены были настоящим испытанием. В итоге в первые несколько лет после окончания ВОВ резко возросло число регулярно пьющих граждан.
Дальше — больше. Во времена Никиты Сергеевича Хрущева социальными проблемами заниматься было некогда. Партия судорожно развивала сельское хозяйство, пытаясь утереть нос Соединенным Штатам Америки. А пришедший после Хрущева Леонид Ильич Брежнев застолья уважал, поэтому его пристрастия аккуратно проецировались на население, которое считало времена его правления золотыми, спокойными и стабильными.
Способы лечения от похмелья в домашних условия
Если человек здоров, то медикаментозное лечение похмельного синдрома дома будет минимальным и не потребует длительных временных затрат. Врачи помогут решить проблему интоксикации (отравления) организма продуктами распада алкоголя и ацетальдегида.
Если же человек находится в хронической стадии алкогольной зависимости, то тут врачам предстоит помимо снятия тяжелого физиологического состояния пациента, выяснить причину зависимости и выбрать метод лечения.
Поясним, что хронической стадией (2 или 3 стадией) алкоголизма считается непреодолимая самостоятельно зависимость от спиртного и отсутствие рвотных рефлексов. И похмелье в этом случае считается не следствием отравления организма, а недополучением очередной дозы спиртного.
Лучевая терапия [ править ]
Измерение поглощенной дозы в ткани имеет фундаментальное значение в радиобиологии, поскольку это мера количества энергии, которую падающее излучение передает ткани-мишени.
Расчет дозы править
Поглощенная доза равна дозе облучения (ионов или Кл / кг) пучка излучения, умноженной на энергию ионизации ионизируемой среды.
Например, энергия ионизации сухого воздуха при 20 ° C и давлении 101,325 кПа составляет33,97 ± 0,05 Дж / Кл . (33,97 эВ на ионную пару) Таким образом, воздействие2,58 × 10 -4 Кл / кг (1 рентген ) приведет к поглощенной дозе8,76 × 10 -3 Дж / кг (0,00876 Гр или 0,876 рад) в сухом воздухе при этих условиях.
Когда поглощенная доза неоднородна или когда она применяется только к части тела или объекта, поглощенная доза, репрезентативная для всего объекта, может быть рассчитана путем взятия средневзвешенного значения поглощенных доз в каждой точке.
Точнее,
DT¯=∫TD(x,y,z)ρ(x,y,z)dV∫Tρ(x,y,z)dV{\displaystyle {\bar {D_{T}}}={\frac {\int _{T}D(x,y,z)\rho (x,y,z)dV}{\int _{T}\rho (x,y,z)dV}}}
Где
- DT¯{\displaystyle {\bar {D_{T}}}} — усредненная по массе поглощенная доза всего объекта T
- T{\displaystyle T} предмет интереса
- D(x,y,z){\displaystyle D(x,y,z)} поглощенная доза как функция местоположения
- ρ(x,y,z){\displaystyle \rho (x,y,z)} плотность как функция местоположения
- V{\displaystyle V} объем
Медицинские соображения править
Неравномерная поглощенная доза характерна для мягких излучений, таких как рентгеновские лучи низкой энергии или бета-излучение. Самоэкранирование означает, что поглощенная доза будет выше в тканях, обращенных к источнику, чем глубже в теле.
Среднее значение массы может быть важным при оценке рисков лучевой терапии, поскольку они предназначены для воздействия на очень определенные объемы тела, как правило, на опухоль. Например, если 10% массы костного мозга пациента облучается локальным излучением 10 Гр, то общая доза, поглощенная костным мозгом, составит 1 Гр. Костный мозг составляет 4% массы тела, поэтому поглощенная доза всего тела составит 0,04 Гр. Первая цифра (10 Гр) указывает на местное воздействие на опухоль, в то время как вторая и третья цифры (1 Гр и 0,04 Гр) являются лучшими индикаторами общего воздействия на здоровье всего организма. Чтобы получить значимую эффективную дозу, которая необходима для оценки риска рака или других стохастических эффектов, необходимо выполнить дополнительные дозиметрические расчеты по этим цифрам.
Когда ионизирующее излучение используется для лечения рака, врач обычно назначает лучевую терапию в единицах серого. Дозы для медицинских изображений могут быть описаны в кулонах на килограмм , но когда используются радиофармпрепараты , их обычно вводят в единицах беккерелей .
Величины, связанные с радиацией [ править ]
В следующей таблице показаны величины излучения в единицах СИ и не в системе СИ:
Количество | Ед. изм | Символ | Вывод | Год | Эквивалентность СИ |
---|---|---|---|---|---|
Активность ( А ) | беккерель | Бк | с −1 | 1974 г. | Единица СИ |
кюри | Ci | 3,7 × 10 10 с −1 | 1953 г. | 3,7 × 10 10 Бк | |
Резерфорд | Rd | 10 6 с −1 | 1946 г. | 1000000 Бк | |
Экспозиция ( X ) | кулон на килограмм | Кл / кг | С⋅кг −1 воздуха | 1974 г. | Единица СИ |
рентген | р | esu / 0,001293 г воздуха | 1928 г. | 2,58 × 10-4 Кл / кг | |
Поглощенная доза ( D ) | серый | Гр | Дж ⋅ кг −1 | 1974 г. | Единица СИ |
эрг на грамм | эрг / г | эрг⋅g −1 | 1950 | 1.0 × 10 −4 Гр | |
рад | рад | 100 эрг⋅г −1 | 1953 г. | 0,010 Гр | |
Эквивалентная доза ( H ) | зиверт | Sv | Дж⋅кг −1 × Вт R | 1977 г. | Единица СИ |
рентген-эквивалент человека | rem | 100 эрг⋅г −1 x Вт R | 1971 г. | 0,010 Зв | |
Эффективная доза ( Е ) | зиверт | Sv | Дж⋅кг −1 × W R x W T | 1977 г. | Единица СИ |
рентген-эквивалент человека | rem | 100 эрг⋅г −1 x W R x W T | 1971 г. | 0,010 Зв |
Хотя Комиссия США по ядерному регулированию допускает использование единиц кюри , рад и бэры рядом единиц СИ, в Европейском Союзе европейских единицы измерения директив требуют , чтобы их использование для «общественного здравоохранения … цели» будет прекращено до 31 декабря 1985 г.