Миллизиверт (мзв, эффективная (эквивалентная) доза ионизирующего излучения) → микрорентген (µр, экспозиционная доза радиоактивного излучения)
Содержание:
Что же такое рентген?
Это один из видов излучения. Если Вы думаете о том, что рентгеновское излучение присутствует только в рентген кабинете, то можем сказать сразу, что Вы сильно ошибаетесь. Вспомним уроки физики. Мы каждый день получаем незначительные дозы излучения:
- на улице, от естественного источника излучения – солнца;
- дома из бытовых источников, находящихся в квартире: от телевизора, различных гаджетов, холодильника и т.д.
Излучение измеряется в зивертах. Какова же норма излучения, которое может потреблять человек? Допустимая– 1000 зивертов в год.
Теперь давайте вспомним математику и посчитаем то, сколько можно делать человеку рентгеновских снимков. Прицельный снимок одного зуба равен 2-3 микрозивертам. Можно делать в год 300-500 рентгеновских снимков. Панорамный снимок (все зубы) равен 16-18 микрозивертов. Можно делать 60-70 рентгеновских снимков в год.
Теперь разберемся с компьютерной томографией. 1 снимок, сделанный на данном устройстве, равен 60-80 микрозивертов. Можно делать 16-20 рентгеновских снимков в год.
Мы сейчас рассматриваем максимальные значения доз, предусмотренных для рентгеновского оборудования. В нашей клинике установлен радиовизиограф и компьютерный томограф последнего поколения производства Германии. Нагрузка на аппаратах сводится к минимуму.
Раньше при проведении рентгеновского снимка время выдержки (вы его слышите как звуковой сигнал) составлял примерно 2-3 секунды. Сейчас это время уменьшено до 0,05 секунды.
А теперь поговорим о бытовом излучении. Если Вы смотрите телевизор 3 часа на расстоянии менее 2,5 метров от экрана, то получаете примерно 0,5 миллизиверта, т.е. 5 дней посмотрели телевизор, получите 1 рентгеновский снимок. Посидели за монитором компьютера более 3-х часов, получаете 1 микрозиверт, 1 рентгеновский снимок. Слетали на самолете в Турцию, где 3-3,5 часов перелета, получите 10 миллизивертов или 5 прицельных снимков. А еще добавьте облучение от телевизоров, холодильников, микроволновых печей и поймете, что страшного облучения в рентгеновском кабинете Вы не получите.
Мощность дозы излучения
Многие ученые считают, что общее количество радиации, которому подвергся организм — не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения — также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте — при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.
В правилах безопасности для тех, кто работает с радиоактивными веществами, ограничения по облучению указаны, в единицах суммарной мощности дозы ионизирующего излучения, и в единицах мощности поглощенной дозы
Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.
В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации.
Опасность для здоровья, вызванная радиацией
Мощность дозы излучения, мкЗв/ч | Опасно для здоровья |
---|---|
>10 000 000 | Смертельно опасно: недостаточность органов и смерть в течение нескольких часов |
1 000 000 | Очень опасно для здоровья: рвота |
100 000 | Очень опасно для здоровья: радиоактивное отравление |
1 000 | Очень опасно: немедленно покиньте зараженную зону! |
100 | Очень опасно: повышенный риск для здоровья! |
20 | Очень опасно: опасность лучевой болезни! |
10 | Опасно: немедленно покиньте эту зону! |
5 | Опасно: как можно быстрее покиньте эту зону! |
2 | Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах |
1 | Безопасно: только для кратковременного нахождения в зоне, например в самолете при посадке или на взлете |
0,5 | Безопасно: можно жить в этой зоне долго или не очень долго, например, в здании со стенами из гранита |
<0,2 | Безопасно: уровень радиации в норме |
Автор статьи: Kateryna Yuri
Радиация и биологические материалы
У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.
Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.
При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов — что, в свою очередь, увеличивает вероятность заболевания раком.
Основные единицы измерения ионизирующих излучений
Рентген (Р, R) – внесистемная единица экспозиционной дозы фотонного (гамма- и рентгеновского) излучений. Микрорентген – миллионная часть рентгена, мкР
Поглощённая доза (сокращённое обозначение – д о з а) – определяется двумя основными способами.
Для малых и средних уровней облучения – применяют единицы Зиверт. Дальше – считают в единицах Грэй. По цифрам, эти ед-цы примерно равны.
Зиверт (Зв, Sv) – в системе единиц СИ, поглощенная доза с учётом, в виде коэффициентов,
энергии и типов излучения (эквивалентная) и радиочувствительности живых органов и тканей в теле человека (эффективная). Данная ед-ца используется до величин дозы – порядка 1.5 зиверта, для более высоких значений облучения – используют Грэи.
1 миллизиверт (мЗв. mSv) = 0.001 зиверт
1 микрозиверт (мкЗв. µSv) = 0.001 милизиверт
Для оценки влияния ионизирующего облучения на человека – служит величина индивидуальной эффективной дозы (ИЭД, мЗв/чел.) Медицинская компонента, обусловленная использованием ИИИ (источников ион. излучения) в медицинских целях – составляет от 20 до 30%.
бэр – биологический эквивалент рентгена; это старая, внесистемная единица поглощённой дозы; современная – Зиверт.
1 бэр ~ 1 сЗв (сантизиверт).
1 Зв ~ 100 бэр
Мощность дозы – д о з а излучения за единицу времени:
0.10 мкЗв/час == 10 мкР/час
(двойной знак равенства означает здесь «примерно»)
1 зиверт == 100 рентген
Коэффициент качества излучения для гамма-квантов и бета-частиц равен единице (Q=1), для быстрых нейтронов Q=10, для альфа-частиц Q=20 и т.д.
Активность (А) радиоактивного вещества – число спонтанных ядерных превращений в этом вещ-ве на определённой площади, в единичном кубическом объёме («объёмная активность») или в единице веса («удельная активность») за малый промежуток времени. Единицей измерения активности, в системе СИ, является:
1 беккерель (Бк, Bq) = 1 ядерное превращение в секунду
109 Бк = 1 гигабеккерель (ГБк, GBq)
До сих пор ещё используется (особенно часто – на экологических картах радиоактивного заражения, в расчёте на квадратный километр) старая внесистемная единица измерения активности рад.вещ. в сист. СГС – К ю р и:
1 кюри (Ки, Ci) = 3,7 х 1010 беккерель = 37 гигабеккерель (ГБк, GBq)
1 мкКи (микрокюри) = 3,7 х 104 распадов в секунду = 2,22 х 106 расп. в минуту.
Человеческий организм содержит примерно 0,1 мкКи калия-40 натурального происхождения.
Верхнее значение безопасной (то есть, на уровне естественной) «минимально значимой активности» (МЗА) – находится в пределах от 3.7 кБк (килобеккерель) до 37 МБк (мегабеккерель), в зависимости от вида излучения (до удельных 74 кБк/кг – для твёрдых бета-активных,
менее 3.7 кБк/кг – для гаммаактивных, меньше 7.4 кБк/кг – для альфаактивных веществ, до 0.37 кБк/кг – для трансурановых).
Грэй (Гр, Gy) – в системе СИ, величина энергии ионизирующего излучения, переданная веществу.
1 Гр (ед. СИ) = 100 рад (внесистемная единица) == 100 рентген (с точностью 15-20%, для энергий 0.1-5 МэВ)
5 мГр == 500 мР = 0.5 Р (безопасная доза общего кратковременного облучения – исключаются клинически выраженные соматические эффекты; при медицинском обследовании или лечении – это как снимок флюорографии, сделанный на старом аппарате, раз в год).
При экспозиционной дозе в 1 рентген, поглощённая доза в воздухе будет 0,85 рад
Источники излучения и его использование
Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.
Мощность дозы излучения бусин из уранового стекла, равная 0,46 мкЗв/ч, примерно в пять раз выше, чем природное фоновое ионизирующее излучение
Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло — пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.
Мощность дозы излучения гранита, равная 0,38 мкЗв/ч, примерно в четыре раза выше, чем природное фоновое ионизирующее излучение
У радиации множество применений — от производства электроэнергии до лечения больных раком
В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей
Можно ли проводить рентгеновское исследование беременным женщинам?
В первой половине срока исследование делается только по строгим показаниям. Во второй половине срока – исследование можно делать сколько угодно.
Еще один интересный факт. Люди очень часто просят рентген-лаборантов надеть на себя побольше защитных свинцовых фартуков. Скажем сразу о том, что это бесполезно. Вы получаете закрытыми и открытыми частями тела одинаковую дозу облучения.
И помните о том, что врач никогда не назначит рентгеновское исследование просто так, из любопытства. Рентген – это один из видов диагностики зоны предполагаемого лечения и анатомических особенностей полости рта.
Приходите в нашу клинику, и мы приложим все усилия, чтобы ваше пребывание в ней стало комфортным и приятным!
Условия, которые усугубляют влияние радиации на организм
На данный момент наши знания о влиянии радиации на организм и о том, в каких условиях это влияние усугубляется, ограничены, так как в распоряжении исследователей имеется совсем немного материала. Большая часть наших знаний основана на исследованиях истории болезни жертв атомных бомбардировок Хиросимы и Нагасаки, а также жертв взрыва на Чернобыльской АЭС. Подробнее о техногенных катастрофах, во время которых произошли выбросы радиоактивных отходов, можно узнать в статье конвертера единиц о радиоактивном распаде.
Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х — 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.
Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.
С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.
Дозиметрический прибор для измерения бета и гамма излучения в Канадском музее науки и технологии, Оттава